मराठी

Find the sum: 1 + (–2) + (–5) + (–8) + ... + (–236) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum:

1 + (–2) + (–5) + (–8) + ... + (–236)

बेरीज

उत्तर

Here, first term (a) = 1

And common difference (d) = (–2) – 1 = –3

∵ Sum of n terms of an AP,

Sn = `n/2[2a + (n - 1)d]`

⇒ Sn = `n/2[2 xx 1 + (n - 1) xx (-3)]`

⇒ Sn = `n/2(2 - 3n + 3)`

⇒ Sn = `n/2(5 - 3n)`   ...(i)

We know that, if the last term (l) of an AP is known, then

l = a + (n – 1)d

⇒ –236 = 1 + (n – 1)(–3)   ...[∵ l = –236, given]

⇒ –237 = – (n – 1) × 3

⇒ n – 1 = 79

⇒ n = 80

Now, put the value of n in equation (i), we get

Sn = `80/2[5 - 3 xx 80]`

= 40(5 – 240)

= 40 × (–235)

= –9400

Hence, the required sum is –9400.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Arithematic Progressions - Exercise 5.3 [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 5 Arithematic Progressions
Exercise 5.3 | Q 21.(i) | पृष्ठ ५३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×