मराठी

If the 8th term of an A.P. is 37 and the 15th term is 15 more than the 12th term, find the A.P. Also, find the sum of first 20 terms of A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If the 8th term of an A.P. is 37 and the 15th term is 15 more than the 12th term, find the A.P. Also, find the sum of first 20 terms of A.P.

बेरीज

उत्तर

For an A.P.

t8 = 37

`=>` a + 7d = 37   ...(i)

Also, t15 – t12 = 15

`=>` (a + 14d) – (a + 11d) = 15

`=>` a + 14d – a – 11d = 15

`=>` 3d = 15

`=>` d = 5

Substituting d = 5 in (i), we get

a + 7 × 5 = 37

`=>` a + 35 = 37

`=>` a = 2

∴ Required A.P. = a, a + d, a + 2d, a + 3d, .....

= 2, 7, 12, 17, .....

Sum of the first 20 terms of this A.P.

= `20/2 [2 xx 2 + 19 xx 5]`

= 10[4 + 95]

= 10 × 99

= 990

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Arithmetic Progression - Exercise 10 (C) [पृष्ठ १४४]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 10 Arithmetic Progression
Exercise 10 (C) | Q 11 | पृष्ठ १४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×