Advertisements
Advertisements
प्रश्न
Find the value of: `(8! + 5(4!))/(4! - 12)`
उत्तर
`(8! + 5(4!))/(4! - 12)`
= `(8! + 5!)/(4xx3xx2-12)`
= `(8 xx 7 xx 6 xx 5! + 5!)/(4xx3xx(2-1))`
= `(5!(8xx7xx6+1))/(4xx3)`
= `(5xx4xx3xx2xx1(336+1))/(4xx3)`
= 5 × 2 × 337
= 3370
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
Evaluate: 6!
Evaluate: (8 – 6)!
Compute: `(9!)/(3! 6!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial:
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Write in terms of factorial:
6 × 7 × 8 × 9
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.