Advertisements
Advertisements
प्रश्न
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
उत्तर
`"n"/(8!) = 3/(6!) + 1/(4!)`
∴ `"n"/(8!)=3/(6!)+(6xx5)/(6xx5xx4!)`
∴ `"n"/(8!)=3/(6!)+30/(6!)`
∴ `"n"/(8xx7xx6!) = 33/(6!)`
∴ `"n"/56` = 33
∴ n = 56 × 33 = 1848
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls, in how many ways can the monitor be selected if the monitor must be a boy? What is the answer if the monitor must be a girl?
How many five-digit numbers formed using the digit 0, 1, 2, 3, 4, 5 are divisible by 3 if digits are not repeated?
Evaluate: 6!
Compute: `(12!)/(6!)`
Compute: `(12/6)!`
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if (n + 3)! = 110 × (n + 1)!
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(8! + 5(4!))/(4! - 12)`
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?