Advertisements
Advertisements
प्रश्न
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
उत्तर
n = 8, r = 6
`("n"!)/("r"!("n" - "r"!)) = (8!)/(6!(8 - 6!))`
= `(8 xx 7 xx 6!)/(2!6!)`
= `(8 xx 7)/(2!)`
= `(8xx7)/(1xx2)`
= 28
APPEARS IN
संबंधित प्रश्न
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: (8 – 6)!
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: 3! × 2!
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n, if (n + 3)! = 110 × (n + 1)!
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.