Advertisements
Advertisements
प्रश्न
Find n, if (n + 3)! = 110 × (n + 1)!
उत्तर
(n + 3)! = 110 × (n + 1)!
∴ (n + 3)(n + 2)(n + 1)! = 110 × (n + 1)!
∴ (n + 3)(n + 2) = 110
∴ n2 + 5n + 6 = 110
∴ n2 + 5n + 6 − 110 = 0
∴ n2 + 5n − 104 = 0
∴ n2 + 13n − 8n − 104 = 0
∴ n(n + 13) − 8(n + 13) = 0
∴ (n + 13)(n − 8) = 0
∴ n + 13 = 0 or n − 8 = 0
∴ n = − 13 or n = 8
But n ∈ N
∴ n ≠ − 13
Hence, n = 8.
APPEARS IN
संबंधित प्रश्न
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
How many five-digit numbers formed using the digit 0, 1, 2, 3, 4, 5 are divisible by 3 if digits are not repeated?
Evaluate: 8! – 6!
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: `(9!)/(3! 6!)`
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Find the value of: `(8! + 5(4!))/(4! - 12)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?