Advertisements
Advertisements
Question
Find n, if (n + 3)! = 110 × (n + 1)!
Solution
(n + 3)! = 110 × (n + 1)!
∴ (n + 3)(n + 2)(n + 1)! = 110 × (n + 1)!
∴ (n + 3)(n + 2) = 110
∴ n2 + 5n + 6 = 110
∴ n2 + 5n + 6 − 110 = 0
∴ n2 + 5n − 104 = 0
∴ n2 + 13n − 8n − 104 = 0
∴ n(n + 13) − 8(n + 13) = 0
∴ (n + 13)(n − 8) = 0
∴ n + 13 = 0 or n − 8 = 0
∴ n = − 13 or n = 8
But n ∈ N
∴ n ≠ − 13
Hence, n = 8.
APPEARS IN
RELATED QUESTIONS
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: 6!
Evaluate: 8! – 6!
Compute: `(9!)/(3! 6!)`
Compute: `(8!)/((6 - 4)!)`
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficient if a coefficient can be repeated in an equation.