Advertisements
Advertisements
Question
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Solution
`((17 - "n")!)/((14 - "n")!)` = 5!
∴ `((17 - "n")(16 - "n")(15 - "n")(14 - "n")!)/((14 - "n")!)` = 5 × 4 × 3 × 2 × 1
∴ (17 – n) (16 – n) (15 – n) = 6 × 5 × 4
Comparing on both sides, we get
17 – n = 6
∴ n = 11
APPEARS IN
RELATED QUESTIONS
Evaluate: 8!
Evaluate: 6!
Compute: `(12!)/(6!)`
Compute: `(12/6)!`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial:
5 × 6 × 7 × 8 × 9 × 10
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficient if a coefficient can be repeated in an equation.