Advertisements
Advertisements
Question
Evaluate: 8! – 6!
Solution
8! – 6!
= 8 × 7 × 6! – 6!
= 6! (8 × 7 − 1)
= 6! (56 − 1)
= 6! × 55
= 6 × 5 × 4 × 3 × 2 × 1 × 55
= 39,600
APPEARS IN
RELATED QUESTIONS
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: 8!
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial:
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficient if a coefficient can be repeated in an equation.