Advertisements
Advertisements
Question
Compute: `(8!)/(6! - 4!)`
Solution
`(8!)/(6! - 4!)`
=` (8 xx 7 xx 6 xx 5 xx 4!)/(6 xx 5 xx 4! - 4!)`
= `(4!(8 xx 7 xx 6 xx 5))/(4!(6 xx 5- 1)`
= `(1680)/(29)`
APPEARS IN
RELATED QUESTIONS
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: 8! – 6!
Compute: `(12/6)!`
Compute: 3! × 2!
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial:
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 3)! = 110 × (n + 1)!
Find n if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5:3
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficient if a coefficient can be repeated in an equation.