Advertisements
Advertisements
Question
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Solution
5 × 10 × 15 × 20 × 25
= (5 × 1) × (5 × 2) × (5 × 3) × (5 × 4) × (5 × 5)
= (55) (5 × 4 × 3 × 2 × 1)
= (55) (5!)
APPEARS IN
RELATED QUESTIONS
Evaluate: 8!
Evaluate: 8! – 6!
Compute: `(12!)/(6!)`
Compute: 3! × 2!
Compute: `(8!)/(6! - 4!)`
Compute: `(8!)/((6 - 4)!)`
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if (n + 3)! = 110 × (n + 1)!
Find n if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5:3
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficient if a coefficient can be repeated in an equation.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?