Advertisements
Advertisements
प्रश्न
Compute: `(8!)/(6! - 4!)`
उत्तर
`(8!)/(6! - 4!)`
=` (8 xx 7 xx 6 xx 5 xx 4!)/(6 xx 5 xx 4! - 4!)`
= `(4!(8 xx 7 xx 6 xx 5))/(4!(6 xx 5- 1)`
= `(1680)/(29)`
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
Evaluate: 8!
Evaluate: 6!
Compute: `(12!)/(6!)`
Compute: `(12/6)!`
Write in terms of factorial:
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Write in terms of factorial:
6 × 7 × 8 × 9
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Find the value of: `(8! + 5(4!))/(4! - 12)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.