Advertisements
Advertisements
प्रश्न
Compute: `(8!)/(6! - 4!)`
उत्तर
`(8!)/(6! - 4!)`
=` (8 xx 7 xx 6 xx 5 xx 4!)/(6 xx 5 xx 4! - 4!)`
= `(4!(8 xx 7 xx 6 xx 5))/(4!(6 xx 5- 1)`
= `(1680)/(29)`
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls, in how many ways can the monitor be selected if the monitor must be a boy? What is the answer if the monitor must be a girl?
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
Evaluate: 8!
Evaluate: 6!
Evaluate: (8 – 6)!
Compute: (3 × 2)!
Compute: `(6! - 4!)/(4!)`
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Write in terms of factorial:
6 × 7 × 8 × 9
Find n, if (n + 1)! = 42 × (n – 1)!
Find n if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5:3
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(8! + 5(4!))/(4! - 12)`
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.