Advertisements
Advertisements
प्रश्न
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
उत्तर
Every subject a student may pass or fail.
∴ Total number of outcomes = 27 = 128
This number includes one case when the student passes in all subjects.
Required number = 128 – 1 = 127
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls, in how many ways can the monitor be selected if the monitor must be a boy? What is the answer if the monitor must be a girl?
How many five-digit numbers formed using the digit 0, 1, 2, 3, 4, 5 are divisible by 3 if digits are not repeated?
Evaluate: 8!
Evaluate: (8 – 6)!
Compute: `(12!)/(6!)`
Compute: (3 × 2)!
Compute: 3! × 2!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5:3
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.