Advertisements
Advertisements
प्रश्न
Compute: `(9!)/(3! 6!)`
उत्तर
`(9!)/(3! 6!)` = `(9 xx 8 xx 7 xx 6!)/((3xx2xx1)xx6!)`
= `(9 xx 8 xx 7)/(3 xx 2 xx 1)`
= 84
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls, in how many ways can the monitor be selected if the monitor must be a boy? What is the answer if the monitor must be a girl?
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
How many five-digit numbers formed using the digit 0, 1, 2, 3, 4, 5 are divisible by 3 if digits are not repeated?
Evaluate: 6!
Evaluate: 8! – 6!
Evaluate: (8 – 6)!
Compute: `(12!)/(6!)`
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5:3
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find the value of: `(8! + 5(4!))/(4! - 12)`
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.