Advertisements
Advertisements
प्रश्न
Compute: `(12/6)!`
उत्तर
`(12/6)!` = 2! = 2 × 1 = 2
APPEARS IN
संबंधित प्रश्न
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: 8!
Evaluate: 8! – 6!
Compute: `(12!)/(6!)`
Compute: (3 × 2)!
Compute: `(9!)/(3! 6!)`
Compute: `(8!)/(6! - 4!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial:
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?