Advertisements
Advertisements
प्रश्न
Evaluate: 8! – 6!
उत्तर
8! – 6!
= 8 × 7 × 6! – 6!
= 6! (8 × 7 − 1)
= 6! (56 − 1)
= 6! × 55
= 6 × 5 × 4 × 3 × 2 × 1 × 55
= 39,600
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls, in how many ways can the monitor be selected if the monitor must be a boy? What is the answer if the monitor must be a girl?
Evaluate: 8!
Compute: `(12!)/(6!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial:
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Find the value of: `(8! + 5(4!))/(4! - 12)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?