Advertisements
Advertisements
प्रश्न
Evaluate: (8 – 6)!
उत्तर
(8 – 6)!
= 2!
= 2 × 1
= 2
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: 6!
Compute: `(12!)/(6!)`
Compute: (3 × 2)!
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5:3
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?