Advertisements
Advertisements
प्रश्न
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?
उत्तर
Every question is ‘SOLVED’ or ‘NOT SOLVED’.
There are 6 questions.
Number of outcomes = 26
This number includes the case when the student solves NONE of the questions.
Required number = 26 – 1 = 64 – 1 = 63
APPEARS IN
संबंधित प्रश्न
Evaluate: 8!
Evaluate: 6!
Compute: (3 × 2)!
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(8! + 5(4!))/(4! - 12)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.