Advertisements
Advertisements
प्रश्न
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
उत्तर
`((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
∴ `((2"n")!)/(7!(2"n" - 7)!) : (4!("n" - 4)!)/("n"!)` = 24
`∴((2"n")(2"n" - 1)(2"n" - 2)(2"n" - 3)(2"n" - 4)(2"n" - 5)(2"n" - 6)(2"n" - 7)!)/(7xx6xx5xx4!(2"n"-7)!)xx(4!("n" - 4)!)/("n"("n" -1)("n" - 2)("n" - 3)("n" - 4)!)=24`
`∴((2"n")(2"n" - 1)(2"n" - 2)(2"n" - 3)(2"n" - 4)(2"n" - 5)(2"n" - 6))/(7 xx 6 xx 5)xx1/("n"("n" -1)("n" - 2)("n" - 3))=24`
`∴((2"n")(2"n" - 1)2("n" - 2)(2"n" - 3)2("n" - 2)(2"n" - 5)2("n" - 3))/(7 xx 6 xx 5)xx1/("n"("n" -1)("n" - 2)("n" - 3))=24`
∴ `(16(2"n" - 1)(2"n" - 3)(2"n" - 5))/(7xx6xx5)` = 24
∴ (2n – 1) (2n – 3) (2n – 5) = `(24xx7xx6xx5)/16`
∴ (2n – 1) (2n – 3) (2n – 5) = 9 × 7 × 5
Comparing on both sides, we get
∴ 2n – 1 = 9
∴ n = 5
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: 8! – 6!
Evaluate: (8 – 6)!
Compute: `(8!)/(6! - 4!)`
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 3)! = 110 × (n + 1)!
Find n if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5:3
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Show that
`("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!`
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(8! + 5(4!))/(4! - 12)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficient if a coefficient can be repeated in an equation.