Advertisements
Advertisements
प्रश्न
Write in terms of factorial:
6 × 7 × 8 × 9
उत्तर
6 × 7 × 8 × 9 = 9 × 8 × 7 × 6
Multiplying and dividing by 5!, we get
= `(9xx8xx7xx6xx5!)/(5!)`
= `(9xx8xx7xx6xx5xx4xx3xx2xx1)/(5!)`
= `(9!)/(5!)`
APPEARS IN
संबंधित प्रश्न
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
A teacher wants to select the class monitor in a class of 30 boys and 20 girls, in how many ways can the monitor be selected if the monitor must be a boy? What is the answer if the monitor must be a girl?
How many five-digit numbers formed using the digit 0, 1, 2, 3, 4, 5 are divisible by 3 if digits are not repeated?
Evaluate: 8! – 6!
Evaluate: (8 – 6)!
Compute: (3 × 2)!
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24:1
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.