Advertisements
Advertisements
Question
A teacher wants to select the class monitor in a class of 30 boys and 20 girls. In how many ways can he select a student if the monitor can be a boy or a girl?
Solution
There are 30 boys and 20 girls in a class.
The teacher wants to select a class monitor from these boys and girls.
A boy can be selected in 30 ways and a girl can be selected in 20 ways.
∴ By using the fundamental principle of addition, the number of ways either a boy or a girl is selected as a class monitor = 30 + 20 = 50.
APPEARS IN
RELATED QUESTIONS
How many three-digit numbers can be formed using the digits 2, 3, 4, 5, 6 if digits can be repeated?
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
Evaluate: 8!
Compute: `(12!)/(6!)`
Compute: `(12/6)!`
Compute: 3! × 2!
Compute: `(9!)/(3! 6!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial:
3 × 6 × 9 × 12 × 15
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Find the value of: `(8! + 5(4!))/(4! - 12)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.