Advertisements
Advertisements
प्रश्न
If numbers are formed using digits 2, 3, 4, 5, 6 without repetition, how many of them will exceed 400?
उत्तर
Case I: Three-digit numbers with 4 occurring in hundred’s place:
100’s place digit can be selected in 1 way.
Ten’s place can be filled by anyone of the number 2, 3, 5, 6.
∴ 10’s place digit can be selected in 4 ways.
Unit’s place digit can be selected in 3 ways.
∴ Total number of numbers which have 4 in 100’s place = 1 × 4 × 3 = 12
Case II: Three digit numbers more than 500
100’s place digit can be selected in 2 ways.
10’s place digit can be selected in 4 ways.
Unit’s place digit can be selected in 3 ways.
∴ Total number of three digit numbers more than 500 = 2 × 4 × 3 = 24
Case III: Number of four-digit numbers formed from 2, 3, 4, 5, 6
Since, repetition of digits is not allowed
∴ Total four digit numbers formed = 5 × 4 × 3 × 2= 120
Case IV: Number of five digit numbers formed from 2, 3, 4, 5, 6
Since, repetition of digits is not allowed
∴ Total five digit numbers formed = 5 × 4 × 3 × 2 × 1 = 120
∴ Total number of numbers that exceed 400 = 12 + 24 + 120 + 120 = 276
APPEARS IN
संबंधित प्रश्न
Evaluate: 6!
Compute: 3! × 2!
Write in terms of factorial:
5 × 10 × 15 × 20 × 25
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 8, r = 6
Evaluate: `("n"!)/("r"!("n" - "r"!)` For n = 12, r = 12
Find n, if `"n"/(8!) = 3/(6!) + 1/(4!)`
Find n, if `1/("n"!) = 1/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n if: `("n"!)/(3!("n" - 5)!) : ("n"!)/(5!("n" - 7)!)` = 10:3
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Show that: `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Find the value of: `(5(26!) + (27!))/(4(27!) - 8(26!)`
Show that: `((2"n")!)/("n"!)` = 2n(2n – 1)(2n – 3)....5.3.1
A student passes an examination if he/she secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Five balls are to be placed in three boxes, where each box can contain up to five balls. Find the number of ways if no box is to remain empty.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?