मराठी

Find the value of ‘c’ for which the quadratic equation (c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0; c ≠ - 1 has real and equal roots. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of ‘c’ for which the quadratic equation 

(c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0; c ≠ - 1

has real and equal roots.

बेरीज

उत्तर

(c + 1)x2 - 6 (c + 1)x + 3(c + 9) = 0

Comparing the above equation with ax2 + bx + c = 0, we get

a = (c + 1), b = - 6(c + 1), c = 3(c + 9)

∴ ∆ = b2 – 4ac

= [- 6(c + 1)]2 - 4(c + 1) × 3(c + 9)

= 36 (c + 1)2 - 12 (c + 1) (c + 9)

= 36 (c2 +2c + 1) - 12(c2 + 10c + 9)

= 36c2 + 72c + 36 - 12c2 - 120c - 108

= 24c2 − 48c − 72

For real and equal roots, we set ∆ = 0;

24c2 − 48c − 72 = 0

Dividing the entire equation by 24 to simplify:

c2 − 2c − 3 = 0

Then, factor the quadratic equation

∴ (c - 3)(c + 1) = 0

So, either

∴ c - 3 = 0 ⇒ c = 3

∴ c + 1 = 0 ⇒ c = - 1

However, it is given that c ≠ - 1.

Therefore, the value of c for which the quadratic equation (c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0 has real and equal roots is c = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Standard Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×