Advertisements
Advertisements
प्रश्न
Find the value of ‘c’ for which the quadratic equation
(c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0; c ≠ - 1
has real and equal roots.
उत्तर
(c + 1)x2 - 6 (c + 1)x + 3(c + 9) = 0
Comparing the above equation with ax2 + bx + c = 0, we get
a = (c + 1), b = - 6(c + 1), c = 3(c + 9)
∴ ∆ = b2 – 4ac
= [- 6(c + 1)]2 - 4(c + 1) × 3(c + 9)
= 36 (c + 1)2 - 12 (c + 1) (c + 9)
= 36 (c2 +2c + 1) - 12(c2 + 10c + 9)
= 36c2 + 72c + 36 - 12c2 - 120c - 108
= 24c2 − 48c − 72
For real and equal roots, we set ∆ = 0;
24c2 − 48c − 72 = 0
Dividing the entire equation by 24 to simplify:
c2 − 2c − 3 = 0
Then, factor the quadratic equation
∴ (c - 3)(c + 1) = 0
So, either
∴ c - 3 = 0 ⇒ c = 3
∴ c + 1 = 0 ⇒ c = - 1
However, it is given that c ≠ - 1.
Therefore, the value of c for which the quadratic equation (c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0 has real and equal roots is c = 3
APPEARS IN
संबंधित प्रश्न
Without solving, examine the nature of roots of the equation 2x2 – 7x + 3 = 0
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
`3x^2 - 4sqrt3x + 4 = 0`
In the following determine the set of values of k for which the given quadratic equation has real roots:
2x2 + kx + 3 = 0
Find the value of k for which the roots of the equation 3x2 - 10x + k = 0 are reciprocal of each other.
Solve x2/3 + x1/3 - 2 = 0.
The value of k for which the equation x2 + 2(k + 1)x + k2 = 0 has equal roots is:
Find the roots of the quadratic equation by using the quadratic formula in the following:
`1/2x^2 - sqrt(11)x + 1 = 0`
Find the nature of the roots of the quadratic equation:
4x2 – 5x – 1 = 0
Let α and β be the roots of the equation, 5x2 + 6x – 2 = 0. If Sn = αn + βn, n = 1, 2, 3, ....., then ______.
If one root of equation (p – 3) x2 + x + p = 0 is 2, the value of p is ______.