Advertisements
Advertisements
प्रश्न
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = `kx^2 - sqrt2x +1`
उत्तर
If x − 1 is a factor of polynomial p(x), then p(1) must be 0.
p(x) = `kx^2 - sqrt2x +1`
p(1) = 0
⇒ `k(1)^2 - sqrt2(1) + 1 = 0`
⇒ `k - sqrt2 + 1=0`
⇒ `k = sqrt2 - 1`
Therefore, the value of k is `sqrt2 -1`.
APPEARS IN
संबंधित प्रश्न
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = kx2 – 3x + k
Factorise:
6x2 + 5x – 6
Find the factor of the polynomial given below.
3y2 – 2y – 1
If x + 1 is a factor of the polynomial 2x2 + kx, then the value of k is ______.
Which of the following is a factor of (x + y)3 – (x3 + y3)?
Determine which of the following polynomials has x – 2 a factor:
3x2 + 6x – 24
Factorise:
2x2 – 7x – 15
Factorise:
a3 – 8b3 – 64c3 – 24abc