Advertisements
Advertisements
प्रश्न
Determine which of the following polynomials has x – 2 a factor:
3x2 + 6x – 24
उत्तर
According to the question,
Let p(x) = 3x2 + 6x − 24 and g(x) = x – 2
g(x) = x – 2
Zero of g(x)
⇒ g(x) = 0
x – 2 = 0
x = 2
Therefore, zero of g(x) = 2
So, substituting the value of x in p(x), we get,
p(2) = 3(2)2 + 6(2) – 24
= 12 + 12 – 24
= 0
Since, the remainder = zero,
We can say that,
g(x) = x – 2 is factor of p(x) = 3x2 + 6x − 24
APPEARS IN
संबंधित प्रश्न
Determine the following polynomial has (x + 1) a factor:
x3 + x2 + x + 1
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = kx2 – 3x + k
Factorise:
6x2 + 5x – 6
Factorize the following polynomial.
(x2 – x)2 – 8 (x2 – x) + 12
Factorize the following polynomial.
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
Factorize the following polynomial.
(y2 + 5y) (y2 + 5y – 2) – 24
Which of the following is a factor of (x + y)3 – (x3 + y3)?
Factorise:
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`