Advertisements
Advertisements
प्रश्न
Show that 2x – 3 is a factor of x + 2x3 – 9x2 + 12.
उत्तर
Let p(x) = 2x3 – 9x2 + x + 12
We have to show that, 2x – 3 is a factor of p(x).
i.e., `p(3/2) = 0`
Now, `p(3/2) = 2(3/2)^3 - 9(3/2)^2 + 3/2 + 12`
= `2 xx 27/8 - 9 xx 9/4 + 3/2 + 12`
= `27/4 - 81/4 + 3/2 + 12`
= `(27 - 81 + 6 + 48)/4`
= `(81 - 81)/4`
= 0
Hence, (2x – 3) is a factor of p(x).
APPEARS IN
संबंधित प्रश्न
Determine the following polynomial has (x + 1) a factor:
x3 + x2 + x + 1
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Factorise:
6x2 + 5x – 6
Factorise:
x3 – 3x2 – 9x – 5
Determine the following polynomial has (x + 1) a factor:
x4 + 3x3 + 3x2 + x + 1
Find the factor of the polynomial given below.
2m2 + 5m – 3
Factorize the following polynomial.
(y + 2) (y – 3) (y + 8) (y + 3) + 56
If x + 1 is a factor of the polynomial 2x2 + kx, then the value of k is ______.
Show that x + 3 is a factor of 69 + 11x – x2 + x3.
Factorise:
a3 – 8b3 – 64c3 – 24abc