Advertisements
Advertisements
प्रश्न
Factorise:
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
उत्तर
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
= `(sqrt(2)a)^3 + (2b)^3 + (-3c)^3 - 3(sqrt(2)a)(2b)(-3c)`
= `(sqrt(2)a + 2b - 3c)[(sqrt(2)a)^2 + (2b)^2 + (-3c)^2 - (sqrt(2)a)(2b) - (2b)(-3c) - (-3c)(sqrt(2)a)]` ...[Using identity, a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)]
= `(sqrt(2)a + 2b - 3c)[2a^2 + 4b^2 + 9c^2 - 2sqrt(2)ab + 6bc + 3sqrt(2)ac]`
APPEARS IN
संबंधित प्रश्न
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = kx2 – 3x + k
Factorise:
x3 – 2x2 – x + 2
Determine the following polynomial has (x + 1) a factor:
x4 + x3 + x2 + x + 1
Find the Factors of the Polynomial Given Below.
2x2 + x – 1
Find the factor of the polynomial given below.
`1/2x^2 - 3x + 4`
Factorize the following polynomial.
(y2 + 5y) (y2 + 5y – 2) – 24
Factorize the following polynomial.
(x – 3) (x – 4)2 (x – 5) – 6
One of the factors of (25x2 – 1) + (1 + 5x)2 is ______.
Show that x + 3 is a factor of 69 + 11x – x2 + x3.
Factorise:
84 – 2r – 2r2