Advertisements
Advertisements
Question
Factorise:
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
Solution
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
= `(sqrt(2)a)^3 + (2b)^3 + (-3c)^3 - 3(sqrt(2)a)(2b)(-3c)`
= `(sqrt(2)a + 2b - 3c)[(sqrt(2)a)^2 + (2b)^2 + (-3c)^2 - (sqrt(2)a)(2b) - (2b)(-3c) - (-3c)(sqrt(2)a)]` ...[Using identity, a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)]
= `(sqrt(2)a + 2b - 3c)[2a^2 + 4b^2 + 9c^2 - 2sqrt(2)ab + 6bc + 3sqrt(2)ac]`
APPEARS IN
RELATED QUESTIONS
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Factorise:
x3 – 2x2 – x + 2
Find the factor of the polynomial given below.
2m2 + 5m – 3
Factorize the following polynomial.
(y2 + 5y) (y2 + 5y – 2) – 24
If x + 1 is a factor of the polynomial 2x2 + kx, then the value of k is ______.
Show that x + 3 is a factor of 69 + 11x – x2 + x3.
Show that p – 1 is a factor of p10 – 1 and also of p11 – 1.
Factorise:
2x2 – 7x – 15
Factorise the following:
`8p^3 + 12/5 p^2 + 6/25 p + 1/125`
Factorise:
a3 – 8b3 – 64c3 – 24abc