Advertisements
Advertisements
प्रश्न
Factorise:
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
उत्तर
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
= `(sqrt(2)a)^3 + (2b)^3 + (-3c)^3 - 3(sqrt(2)a)(2b)(-3c)`
= `(sqrt(2)a + 2b - 3c)[(sqrt(2)a)^2 + (2b)^2 + (-3c)^2 - (sqrt(2)a)(2b) - (2b)(-3c) - (-3c)(sqrt(2)a)]` ...[Using identity, a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)]
= `(sqrt(2)a + 2b - 3c)[2a^2 + 4b^2 + 9c^2 - 2sqrt(2)ab + 6bc + 3sqrt(2)ac]`
APPEARS IN
संबंधित प्रश्न
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Factorise:
12x2 – 7x + 1
Factorise:
6x2 + 5x – 6
Factorise:
3x2 – x – 4
Factorise:
x3 + 13x2 + 32x + 20
Factorise:
84 – 2r – 2r2
Factorise the following:
9x2 – 12x + 4
Factorise:
1 + 64x3
Without finding the cubes, factorise:
(x – 2y)3 + (2y – 3z)3 + (3z – x)3