Advertisements
Advertisements
प्रश्न
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`
उत्तर
Given, `(1/2)^3 + (1/3)^3 - (5/6)^3` or `(1/2)^3 + (1/3)^3 + (- 5/6)^3`
Here, we see that,
`1/2 + 1/3 - 5/6`
= `(3 + 2 - 5)/6`
= `(5 - 5)/6`
= 0
∴ `(1/2)^3 + (1/3)^3 - (5/6)^3 = 3 xx 1/2 xx 1/3 xx (-5/6)` ...[Using identity, if a + b + x = 0, then a3 + b3 + c3 = 3abc]
= `- 5/12`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Evaluate the following product without multiplying directly:
104 × 96
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
27 – 125a3 – 135a + 225a2
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Evaluate the following using identities:
(0.98)2
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Use identities to evaluate : (998)2
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Evaluate the following without multiplying:
(999)2
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19