हिंदी

If a - 1/A= 8 And a ≠ 0 Find : (I) a + 1/A (Ii) A^2 - 1/A^2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a - `1/a`= 8 and  a ≠ 0 find :
(i) `a + 1/a   (ii)  a^2 - 1/a^2`

योग

उत्तर

We know that,
( a + b )2 = a2 + 2ab + b2

Given that `a - 1/a` = 8 ; Substitute in equation (1), we have
`(8)^2 = a^2 + 1/a^2 - 2`

⇒ `a^2 + 1/a^2 = 64 + 2`

⇒ `a^2 + 1/a^2 = 66`     

⇒ `(a + 1/a)^2 = a^2 + 1/a^2 + 2`                  

⇒ `(a + 1/a)^2 = 66 + 2`

⇒ `(a + 1/a)^2 = 68`

i) `a + 1/a = sqrt68 `

⇒ `sqrt(17xx4 )= _-^+2sqrt17`

ii) `a^2 - 1/a^2 = (a+1/a) (a - 1/a)`

 ⇒ `a^2 - 1/a^2 = _-^+2sqrt17 xx 8`

 ⇒ `a^2 - 1/a^2 = _-^+16sqrt17`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Expansions (Including Substitution) - Exercise 4 (A) [पृष्ठ ५८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 4 Expansions (Including Substitution)
Exercise 4 (A) | Q 11 | पृष्ठ ५८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×