हिंदी

If a + = 6 Ans A ≠ 0 Find : (I) a - 1/A (Ii) A^2 - 1/A^2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a + `1/a`= 6 and  a ≠ 0 find :
(i) `a - 1/a   (ii)  a^2 - 1/a^2`

योग

उत्तर

We know that,
( a + b )2 = a2 + 2ab + b2
and
( a - b )2 = a2 - 2ab + b
Thus,
`( a + 1/a )^2 = a^2 + 1/a^2 + 2 xx a xx 1/a`

                       = `a^2 + 1/a^2 + 2`           .....(1)
Given that `a + 1/a` = 6; Substitute in equation (1), we have
`(6)^2 = a^2 + 1/a^2 + 2`

⇒ `a^2 + 1/a^2 = 36 - 2`

⇒ `a^2 + 1/a^2 = 34`                                ....(2)

Similarly, consider
`( a - 1/a )^2 = a^2 + 1/a^2 - 2 xx a xx 1/a`

= `a^2 + 1/a^2 - 2`   
= 34 - 2                                [ from (2) ]

⇒ `( a - 1/a )^2` = 32

⇒ `( a - 1/a ) = +- sqrt32`

⇒ `( a - 1/a ) = +-  4sqrt2`                       ....(3)

(ii) We need to find  `a^2 - 1/a^2`

We know that, `a^2 - 1/a^2 = ( a - 1/a )( a + 1/a )` 

`a - 1/a = +- 4sqrt2 ; a + 1/a = 6`

Thus,
`a^2 - 1/a^2 = (+- 4sqrt2 )(6)`

⇒ `a^2 - 1/a^2 = (+- 24sqrt2 )`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Expansions (Including Substitution) - Exercise 4 (A) [पृष्ठ ५८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 4 Expansions (Including Substitution)
Exercise 4 (A) | Q 10 | पृष्ठ ५८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×