Advertisements
Advertisements
प्रश्न
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
उत्तर
We know that,
( a + b )2 = a2 + 2ab + b2
and
( a - b )2 = a2 - 2ab + b2
Thus,
`( a + 1/a )^2 = a^2 + 1/a^2 + 2 xx a xx 1/a`
= `a^2 + 1/a^2 + 2` .....(1)
Given that `a + 1/a` = 6; Substitute in equation (1), we have
`(6)^2 = a^2 + 1/a^2 + 2`
⇒ `a^2 + 1/a^2 = 36 - 2`
⇒ `a^2 + 1/a^2 = 34` ....(2)
Similarly, consider
`( a - 1/a )^2 = a^2 + 1/a^2 - 2 xx a xx 1/a`
= `a^2 + 1/a^2 - 2`
= 34 - 2 [ from (2) ]
⇒ `( a - 1/a )^2` = 32
⇒ `( a - 1/a ) = +- sqrt32`
⇒ `( a - 1/a ) = +- 4sqrt2` ....(3)
(ii) We need to find `a^2 - 1/a^2`
We know that, `a^2 - 1/a^2 = ( a - 1/a )( a + 1/a )`
`a - 1/a = +- 4sqrt2 ; a + 1/a = 6`
Thus,
`a^2 - 1/a^2 = (+- 4sqrt2 )(6)`
⇒ `a^2 - 1/a^2 = (+- 24sqrt2 )`
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Write the following cube in expanded form:
`[x-2/3y]^3`
Write in the expanded form:
`(m + 2n - 5p)^2`
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
If a - b = 10 and ab = 11; find a + b.
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify (2x – 5y)3 – (2x + 5y)3.
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).