Advertisements
Advertisements
प्रश्न
If a - b = 10 and ab = 11; find a + b.
उत्तर
a - b = 10, ab = 11
We know that :
(a - b)2 = a2 - 2ab + b2
⇒ (10)2 = a2 + b2 - 2 x 11
⇒ 100 = a2 + b2 - 22
⇒ a2 + b2
= 100 + 22
= 122
Using (a + b)2 = a2 + b2 + 2ab, we get
(a + b)2
= 122 +2(11)
= 122 + 22
= 144
⇒ (a + b)
= `sqrt(144)`
= ±12.
APPEARS IN
संबंधित प्रश्न
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If a1/3 + b1/3 + c1/3 = 0, then
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)