Advertisements
Advertisements
प्रश्न
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
उत्तर
We have,
`4x^2 + y^2 + 25z^2 + 4xy - 10yz - 20zx`
`=> (2x)^2 + (y)^2 + (-5z)^2 + 2(2x)(y) + 2(y)(-5z) + 2(-5z)(2x)`
`=:> (2x + y - 5z)^2`
`=> [2[4] + 3 - 5(2)]^2` [∵ x = 4, y = 3 and z = 2]
`= [8 + 3 - 10]^2`
`=[1]^2`
= 1
`∴ 4x^2 + y^2 + 25z^2 + 4xy - 10yz - 20zx = 1`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Evaluate of the following:
933 − 1073
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If a − b = −8 and ab = −12, then a3 − b3 =
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
(xy+4) (xy−4)
Expand the following:
(a + 4) (a + 7)
Expand the following:
(a + 3b)2
Simplify by using formula :
(5x - 9) (5x + 9)
If m - n = 0.9 and mn = 0.36, find:
m + n
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`