Advertisements
Advertisements
प्रश्न
If a − b = −8 and ab = −12, then a3 − b3 =
विकल्प
−244
−240
−224
−260
उत्तर
To find the value of a3 − b3
Given `a-b = -8,ab =-12`
Using identity `(a-b)^3 = a^3 - b^3 -3ab(a-b)`
Here `a-b = -8,ab =-12`we get
`(-8)^3 = a^3 -b^3 -3ab(a-b)`
`(-8)^3 =a^3 -b^3 -3 xx -12 xx -8`
`-512 = a^3 -b^3 - 288`
Transposing -288 to left hand side we get
`- 512 + 288 = a^3 - b^3`
`-224 = a^3 - b^3`
Hence the value of `a^3 -b^3 `is -224 .
APPEARS IN
संबंधित प्रश्न
Factorise the following:
27y3 + 125z3
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If x = −2 and y = 1, by using an identity find the value of the following
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Evalute : `( 7/8x + 4/5y)^2`
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: 20.8 × 19.2
Expand the following:
(x - 3y - 2z)2
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Which one of the following is a polynomial?
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
4x2 + 20x + 25
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`