Advertisements
Advertisements
प्रश्न
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
उत्तर १
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x-1/x = 3 + 2sqrt2`
Cubing on both sides of `x-1/x = 3 + 2sqrt2`
we get \[\left( x - \frac{1}{x} \right)^3 = \left( 3 + 2\sqrt{2} \right)^3\]
We shall use identity `(a+b)^3 = a^3+b^3 + 3ab (a+b)`
`(3+ 2sqrt2)^3 = x^3 -1/x^3- 3 xx x xx 1/x(x- 1/x)`
`3^3 + (2 sqrt2)^3 +3 xx3 xx 2sqrt2(3+2sqrt2) = x^3 - 1/x^3 - 3xx x xx 1/x xx (3+2sqrt2)`
`27 + 16sqrt2 + 18 sqrt2(3+2sqrt2) = x^3 - 1/x^3 - 3(3+2sqrt2)`
\[27 + 16\sqrt{2} + 18\sqrt{2} \times 3 + 18\sqrt{2} \times 2\sqrt{2} = x^3 - \frac{1}{x^3} - 9 - 6\sqrt{2}\]
\[27 + 16\sqrt{2} + 54\sqrt{2} + 72 = x^3 - \frac{1}{x^3} - 9 - 6\sqrt{2}\]
`27+ 16sqrt2 + 54sqrt2 + 72 + 9+ 6sqrt2 = x^3 - 1/x^3`
`[27 + 72 + 9]+[16sqrt2 + 54 sqrt2 +6sqrt2] = x^3 - 1/x^3`
`108 + 76 sqrt2 = x^3 - 1/x^3`
Hence the value of `x^3-1/x^3`is `108+76sqrt2`.
उत्तर २
`(x - 1/x)^3 = (x^3 - 1/x^3) =- 3 · x · 1/x · (x - 1/x)`
`x^3 - 1/x^3 = (x - 1/x)^3 + 3(x - 1/x)`
`x^3 - 1/x^3 = (3 + 2sqrt2)^3 + 3(3 + 2sqrt2)`
= `3 + 2sqrt2 ((3 + 2sqrt2)^2 + 3)`
= `(3 + 2sqrt2) (9 + 8 + 12sqrt2 + 3)`
= `63 + 36sqrt2 + 42sqrt2 + 24 · 2`
= `63 + 48 + 78sqrt2`
= `111 + 78sqrt2`.
APPEARS IN
संबंधित प्रश्न
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expand form: `(2x - y + z)^2`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
Evaluate of the following:
(598)3
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If x + y = 9, xy = 20
find: x - y
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If x + y = 1 and xy = -12; find:
x2 - y2.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Expand the following:
(–x + 2y – 3z)2
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Expand the following:
(3a – 2b)3
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4