Advertisements
Advertisements
प्रश्न
Simplify of the following:
(x+3)3 + (x−3)3
उत्तर
In the given problem, we have to simplify equation
Given (x+3)3 + (x−3)3
We shall use the identity `a^3 + b^3 = (a + b)(a^2+b^2 - ab)`
Here `a= (x+3),b= (x-3)`
By applying identity we get
` = (x+ 3+x - 3)[(x+ 3)^2 + (x-3)^2 - (x+ 3)(x-3)]`
` = 2x[(x^2 + 3^2 + 2 xx x xx 3) + (x^2 + 3^2 - 2 xx x xx 3) -(x^2-3^2)]`
` = 2x [(x^2+ 9 + 6x) + (x^2 + 9 - 6 x)-(x^2 - 3^2)]`
` = 2x[x^2 + 9 + 6x + x^2 + 9 -6x - x^2 + 9]`
`= 2x [x^2 + x^2 - x^2 - 6x + 6x+ 9 + 9 + 9]`
` = 2x [x^2 + 27]`
` = 2x^3 + 54x`
Hence simplified form of expression`(x+3)^3 +(x-3)^3`is `2x^3 + 54x`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Write in the expanded form: `(x + 2y + 4z)^2`
Simplify `(a + b + c)^2 + (a - b + c)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If a + b = 7 and ab = 12, find the value of a2 + b2
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
Find the square of 2a + b.
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If x + y = 1 and xy = -12; find:
x2 - y2.
Simplify (2x – 5y)3 – (2x + 5y)3.