Advertisements
Advertisements
प्रश्न
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
उत्तर
We know that,
`(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)`
`=> (0)^2 = 16 + 2(ab + bc + ca)` `[∵ a + b + c = and a^2 + b^2 + c^2 = 16] `
=> 2(ab + bc + ca) = -16
=> ab + bc + ca = -8
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Evaluate the following using identities:
(399)2
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Evaluate the following:
(98)3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)