Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
उत्तर
We have,
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
`=[x^2 + y^2 + (-2z)^2 + 2xy + 2(y)(-2z)] - x^2 - y^2 - 3z^2 + 4xy`
`= x^2 + y^2 + 4z^2 + 2xy - 4yz - x^2 - y^2 - 3z^2 = 4xy`
`= z^2 + 6xy - 4yz - 4zx`
`∴ (x + y - 2z)^2 - x^2 - y^2 - 3z^2 + 4xy = z^2 + 6xy - 4yz - 4zx`
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Write in the expanded form:
`(a + 2b + c)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Evaluate the following:
(98)3
Evaluate of the following:
933 − 1073
Simplify of the following:
(x+3)3 + (x−3)3
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(2+a) (2−a)
Evaluate: 20.8 × 19.2
Expand the following:
(2p - 3q)2
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Expand the following:
(3a – 5b – c)2
Expand the following:
`(1/x + y/3)^3`