Advertisements
Advertisements
प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
उत्तर
64a3 – 27b3 – 144a2b + 108ab2
= (4a)3 – (3b)3 – 3(4a) (3b) (4a – 3b)
= (4a – 3b)3 ...[Using a3 – b3 – 3ab(a – b) = (a – b)3]
= (4a – 3b)(4a – 3b)(4a – 3b)
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Write the following cube in expanded form:
(2x + 1)3
Write in the expanded form: `(x/y + y/z + z/x)^2`
Write in the expanded form: `(x + 2y + 4z)^2`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: (9 − y) (7 + y)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Expand the following:
(3x + 4) (2x - 1)
Find the squares of the following:
9m - 2n
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If x + y = 1 and xy = -12; find:
x2 - y2.
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).