Advertisements
Advertisements
प्रश्न
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
उत्तर
Given x is 2 more than y, so x = y + 2
Sum of squares of x and y is 34, so x2 + y2 = 34.
Replace x = y + 2 in the above equation and solve for y.
We get (y + 2)2 + y2 = 34
2y2 + 4y - 30 = 0
y2 + 2y - 15 = 0
(y + 5)(y - 3) = 0
So y = -5 or 3
For y = -5, x =-3
For y = 3, x = 5
Product of x and y is 15 in both cases.
APPEARS IN
संबंधित प्रश्न
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Write the expanded form:
`(-3x + y + z)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401