Advertisements
Advertisements
प्रश्न
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
उत्तर
In the given problem, we have to find Product of equations
Given (3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
We shall use the identity
`x^3 + y^3 + z^3 -xyz = (x+ y +z)(x^2 + y^2+z^2 - xy - yz -zx)`
` = (3x)^3 + (-4y)^3 + (5z)^3 - 3 (3x)(4y) (5z)`
`= (3x)xx (3x)xx(3x) - (-4y) xx (-4y) xx (-4y)+(5z)xx (5z)xx(5z) -3 (3x) (-4y)(5z)`
` = 27x^3 - 64y^3 + 125z^3 + 180xyz`
Hence the product of (3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)is ` 27x^3 - 64y^3 + 125z^3 + 180xyz`
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
103 × 107
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Expand the following, using suitable identity:
(2x – y + z)2
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the following product:
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Expand the following:
(3x + 4) (2x - 1)
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Factorise the following:
4x2 + 20x + 25
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.