Advertisements
Advertisements
प्रश्न
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
उत्तर
R.H.S.
= `1/2(x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2]`
= `1/2(x + y + z)[(x^2 + y^2 - 2xy) + (y^2 + z^2 - 2yz) + (z^2 + x^2 - 2zx)]`
= `1/2(x + y + z)(x^2 + y^2 + y^2 + z^2 + z^2 + x^2 - 2xy - 2yz - 2zx)`
= `1/2 (x + y + z)[2(x^2 + y^2 + z^2 - xy - yz - zx)]`
= `2 xx 1/2 xx (x + y + z)(x^2 + y^2 + z^2 − xy − yz − zx)`
= (x + y + z)(x2 + y2 + z2 − xy − yz − zx)
= x3 + y3 + z3 − 3xyz
= L.H.S.
Hence, it is verified.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Evaluate the following product without multiplying directly:
104 × 96
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write the following cube in expanded form:
`[x-2/3y]^3`
Evaluate the following using suitable identity:
(99)3
Evaluate the following using suitable identity:
(998)3
Factorise:
27x3 + y3 + z3 – 9xyz
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write in the expanded form:
`(a + 2b + c)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Evaluate of the following:
(9.9)3
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate the following without multiplying:
(103)2
If m - n = 0.9 and mn = 0.36, find:
m + n
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19