Advertisements
Advertisements
Question
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Solution
R.H.S.
= `1/2(x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2]`
= `1/2(x + y + z)[(x^2 + y^2 - 2xy) + (y^2 + z^2 - 2yz) + (z^2 + x^2 - 2zx)]`
= `1/2(x + y + z)(x^2 + y^2 + y^2 + z^2 + z^2 + x^2 - 2xy - 2yz - 2zx)`
= `1/2 (x + y + z)[2(x^2 + y^2 + z^2 - xy - yz - zx)]`
= `2 xx 1/2 xx (x + y + z)(x^2 + y^2 + z^2 − xy − yz − zx)`
= (x + y + z)(x2 + y2 + z2 − xy − yz − zx)
= x3 + y3 + z3 − 3xyz
= L.H.S.
Hence, it is verified.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write in the expanded form:
`(m + 2n - 5p)^2`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
(x+1) (x−1)
Simplify by using formula :
(a + b - c) (a - b + c)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate the following without multiplying:
(999)2
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).