Advertisements
Advertisements
Question
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Solution 1
Consider the given expression :
Let us expand the first term : `[ a/(2b) + (2b)/a]^2`
We know that,
( a + b )2 = a2 + b2 + 2ab
∴ `[ a/(2b) + (2b)/a]^2 = (a/(2b))^2 + ((2b)/a)^2 + 2 xx a/(2b) xx (2b)/a`
= `a^2/(4b)^2 + (4b)^2/a^2 + 2` ...(1)
Let us expand the second term : `[ a/[2b] - [2b]/a]^2`
We know that,
( a - b )2 = a2 + b2 - 2ab
∴ `[ a/(2b) - (2b)/a]^2 = (a/(2b))^2 + ((2b)/a)^2 - 2 xx a/(2b) xx (2b)/a`
= `a^2/(4b)^2 + (4b)^2/a^2 - 2` ...(2)
Thus from (1) and (2), the given expression is
`[ a/(2b) + (2b)/a]^2 - [ a/(2b) - (2b)/a]^2 - 4 `
`= a^2/(4b)^2 + (4b)^2 /a^2 + 2 - a^2/(4b)^2 - (4b)^2/a^2 + 2 - 4`
= 0.
Solution 2
x2 - y2 = (x - y) (x + y)
So,
`= (a/(2b) + (2b)/a)^2 - (a/(2b) - (2b)/a)^2`
`= [(a/(2b) + (2b)/a) - (a/(2b) - (2b)/a)] [(a/(2b) + (2b)/a)] + (a/ (2b) - (2b)/a)`
`= ((4b)/a) ((2a)/(2b))`
= 4
So,
`(a/(2b)+ (2b)/a)^2 - (a/(2b) - (2b)/a)^2 - 4`
= 4 - 4
= 0
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(x + 2y + 4z)2
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Evaluate the following:
(98)3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4