Advertisements
Advertisements
प्रश्न
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
उत्तर १
Consider the given expression :
Let us expand the first term : `[ a/(2b) + (2b)/a]^2`
We know that,
( a + b )2 = a2 + b2 + 2ab
∴ `[ a/(2b) + (2b)/a]^2 = (a/(2b))^2 + ((2b)/a)^2 + 2 xx a/(2b) xx (2b)/a`
= `a^2/(4b)^2 + (4b)^2/a^2 + 2` ...(1)
Let us expand the second term : `[ a/[2b] - [2b]/a]^2`
We know that,
( a - b )2 = a2 + b2 - 2ab
∴ `[ a/(2b) - (2b)/a]^2 = (a/(2b))^2 + ((2b)/a)^2 - 2 xx a/(2b) xx (2b)/a`
= `a^2/(4b)^2 + (4b)^2/a^2 - 2` ...(2)
Thus from (1) and (2), the given expression is
`[ a/(2b) + (2b)/a]^2 - [ a/(2b) - (2b)/a]^2 - 4 `
`= a^2/(4b)^2 + (4b)^2 /a^2 + 2 - a^2/(4b)^2 - (4b)^2/a^2 + 2 - 4`
= 0.
उत्तर २
x2 - y2 = (x - y) (x + y)
So,
`= (a/(2b) + (2b)/a)^2 - (a/(2b) - (2b)/a)^2`
`= [(a/(2b) + (2b)/a) - (a/(2b) - (2b)/a)] [(a/(2b) + (2b)/a)] + (a/ (2b) - (2b)/a)`
`= ((4b)/a) ((2a)/(2b))`
= 4
So,
`(a/(2b)+ (2b)/a)^2 - (a/(2b) - (2b)/a)^2 - 4`
= 4 - 4
= 0
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a1/3 + b1/3 + c1/3 = 0, then
Use identities to evaluate : (101)2
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz