Advertisements
Advertisements
प्रश्न
If a1/3 + b1/3 + c1/3 = 0, then
पर्याय
a + b + c = 0
(a + b + c)3 =27abc
a + b + c = 3abc
a3 + b3 + c3 = 0
उत्तर
Given `a^(1/3) +b^(1/3) +c^(1/3) = 0`
Using identity `a^3 +b^3 +c^3 = 3abc` we get
Here `a= a^(1/3) ,b=b^(1/3) , c = c^(1/3) `
`(a^(1/3))^3 + (b^(1/3))^3 +(c^(1/3))^3 = 3 xx a^(1/3) xx b^(1/3) xx c^(1/3)`
`(3sqrta)^3 +(3sqrtb)^3 +(3sqrtc)^3 =3 xx 3sqrta xx 3sqrtb xx3sqrt c`
`a+b+c = 3 xx 3sqrt a xx 3sqrtb xx 3sqrtc`
Taking Cube on both sides we get,
`(a+b+c)^3 = (3xx 3sqrta xx 3sqrtb xx 3sqrtc)^3`
`(a+b+c)^3 = 27abc`
Hence the value of `a^(1/3) +b^(1/3) +c^(1/3) = 0` is `(a+b+c)^3 = 27abc` .
APPEARS IN
संबंधित प्रश्न
Write in the expanded form:
`(m + 2n - 5p)^2`
Write in the expanded form:
`(2 + x - 2y)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If a − b = 4 and ab = 21, find the value of a3 −b3
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
If a + b = 7 and ab = 12, find the value of a2 + b2
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a2 + b2 + c2 − ab − bc − ca =0, then
Use identities to evaluate : (101)2
Evaluate the following without multiplying:
(999)2
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Using suitable identity, evaluate the following:
1033
Expand the following:
(3a – 2b)3