Advertisements
Advertisements
प्रश्न
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
पर्याय
0
1
-1
3
उत्तर
We have to find `a^2/(bc)+ b^2 /(ca) +c^2 /(ab)`
Given a + b + c = 0
Using identity `a^3 +b^3 +c^3 -3abc = (a+b+c)(a^2 +b^2 +c^2 -ab -bc -ca)`
`a^3 +b^3 +c^3 -3abc = 0 (a^2 +b^2 +c^2 -ab -bc -ca)`
`a^3 +b^3 +c^3 - 3abc = 0 `
`a^3 +b^3 + c^3 = 3abc`
`a^3 /(abc)+ b^3/(abc) +c^3 /(abc ) = 3`
`((a xx a xx a)/(a xx b xx c))+ ((b xx b xx b)/(a xx b xx c))+((c xx c xx c)/(a xx b xx c)) = 3 `
`a^2 /(abc)+ b^2/(abc) +c^2 /(abc ) = 3`
Hence the value of `a^2 /(bc)+ b^2/(ac) +c^2 /(ab ) = 3`.
APPEARS IN
संबंधित प्रश्न
Factorise the following:
27y3 + 125z3
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
(a − b)3 + (b − c)3 + (c − a)3 =
Use identities to evaluate : (101)2
Evaluate: (2a + 0.5) (7a − 0.3)
Expand the following:
(m + 8) (m - 7)
Expand the following:
(3x + 4) (2x - 1)
Expand the following:
(x - 3y - 2z)2
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Expand the following:
(3a – 5b – c)2
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.
Simplify (2x – 5y)3 – (2x + 5y)3.